13 hashlock.

Security Audit
AUDX Stablecoin (Token)

July 2025 info@hashlock.com.au

o)
e
o
N

Hashlock Pty Ltd



Table of Contents

Executive Summary
Project Context
Audit Scope
Security Rating
Intended Smart Contract Functions
Code Quality

Audit Resources
Dependencies
Severity Definitions
Status Definitions
Audit Findings
Centralisation
Conclusion

Our Methodology
Disclaimers

About Hashlock

1+ hashlock

Hashlock Pty Ltd

o N A~ b

10
10
10
1
12
13
17
18
19
21
22



CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN
CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED
VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO
COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR
INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE
REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS
REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

- hashlock

Hashlock Pty Ltd



Executive Summary

The BetterX team partnered with Hashlock to conduct a security audit of their smart
contracts. Hashlock manually and proactively reviewed the code in order to ensure the

project’s team and community that the deployed contracts are secure.

Project Context

AUDX Token is a stablecoin project designed to provide a transparent, secure, and fully
backed digital asset tied to the value of the Australian Dollar (AUD). Its mission is to
deliver stability and trust in the digital economy, making it easier for individuals,
businesses, and institutions to transact without exposure to the volatility commonly
associated with cryptocurrencies. By leveraging strong compliance standards and
financial oversight, AUDX aims to bridge the gap between traditional finance and
blockchain technology. The project places a strong emphasis on reliability, accessibility,
and requlatory alignment, positioning itself as a trusted solution for everyday use and

larger financial applications.
AUDX operates under TAU PTY LTD Trading as AUDX Token ABN 72 649 232 995.

Project Name: AUDX Stablecoin
Project Type: Token
Compiler Version: "0.8.20

Website: https://www.audxtoken.com/

Logo:

@ AUDX Token

i hashlock

Hashlock Pty Ltd


https://www.audxtoken.com/

Visualised Context:

Project Name Launch Date

AUDX Stablecoin TBA
Compiler Version Language
v*0.8.20 SOLIDITY
Network Token Ticker
ETHEREUM, AUDX
POLYGON

Frhashlock.

Hashlock Pty Ltd



Project Visuals:

(9 AUDX Token

Fast, Reliable
& Digital

/ Advantages

Accessible

Secure

Transparent

Economical

Fast & Agile

/

Frhashlock.

Hashlock Pty Ltd



Audit Scope

We at Hashlock audited the solidity code within the AUDX Stablecoin project, the scope

of work included a comprehensive review of the smart contracts listed below. We

tested the smart contracts to check for their security and efficiency. These tests were

undertaken primarily through manual line-by-line analysis and were supported by

software-assisted testing.

Contract 1 ERC1967Proxy.sol
Contract 2 Ownable.sol

Contract 3 IERC1967.s0l

Contract 4 BeaconProxy.sol
Contract 5 IBeacon.sol

Contract 6 UpgradeableBeacon.sol
Contract 7 ERC1967Utils.sol
Contract 8 Proxy.sol

Contract 9 ProxyAdmin.sol

Contract 10

TransparentUpgradeableProxy.sol

Contract 11

Address.sol

Contract 12

Context.sol

Contract 13

StorageSlot.sol

Audited Contract Token

OxD687759f35bb747A2924634b9495C8f52C49E00C

Token Contract Fix Review

Ox79902A09865AE680d2dB420227414Adc1298370B

Frhashlock.

Hashlock Pty Ltd




Security Rating

After Hashlock’s Audit, we found the smart contracts to be "Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts.

Not Secure AL EEDIE Secure Hashlocked

The 'Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed
and applicable vulnerabilities are presented in the Audit Findings section. The list of

audited assets is presented in the Audit Scope section and the project's contract
functionality is presented in the Intended Smart Contract Functions section.

The vulnerability initially identified has now been resolved.

Hashlock found:

1 Medium severity vulnerability

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not
liable or responsible for security. Always conduct independent research about any

project before interacting.

Frhashlock.

Hashlock Pty Ltd



Intended Smart Contract Functions

AussieDollarToken

upgradeable,

- Stablecoin is pegged to the Australian dollar, is

has a blacklist mechanism,

transfers can be paused, and tokens can be

rescued to the treasurers in case of emergency

Contract achieves this

functionality.

Frhashlock.

Hashlock Pty Ltd



10

Code Quality

This audit scope involves the smart contracts of the AUDX Stablecoin project, as
outlined in the Audit Scope section. All contracts, libraries, and interfaces mostly follow
standard best practices and to help avoid unnecessary complexity that increases the
likelihood of exploitation; however, some refactoring was required to optimize security

Mmeasures.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the AUDX Stablecoin project smart contract code in the form of GitHub

access.

As mentioned above, code parts are well commented. The logic is straightforward, and
therefore it is easy to quickly comprehend the programming flow as well as the complex
code logic. The comments are helpful in providing an understanding of the protocol's

overall architecture.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are
based on well-known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

1t hashlock

Hashlock Pty Ltd



11
Severity Definitions

The severity levels assigned to findings represent a comprehensive evaluation of both
their potential impact and the likelihood of occurrence within the system. These
categorizations are established based on Hashlock's professional standards and
expertise, incorporating both industry best practices and our discretion as security
auditors. This ensures a tailored assessment that reflects the specific context and risk

profile of each finding.

Description

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Optimisations, issues, and inefficiencies.

Quality Assurance (QA) findings are informational and
don't impact functionality. Supports clients improve the
clarity, maintainability, or overall structure of the code.

Fhashlock.

Hashlock Pty Ltd



12

Status Definitions

Each identified security finding is assigned a status that reflects its current stage of
remediation or acknowledgment. The status provides clarity on the handling of the

issue and ensures transparency in the auditing process. The statuses are as follows:

Description

The identified wvulnerability has been fully mitigated
either through the implementation of the recommended
solution proposed by Hashlock or through an alternative
client-provided solution that demonstrably addresses the
issue.

The client has formally recognized the vulnerability but
has chosen not to address it due to the high cost or
complexity of remediation. This status is acceptable for
medium and low-severity findings after internal review
and agreement. However, all high-severity findings must
be resolved without exception.

The finding remains neither remediated nor formally
acknowledged by the client, leaving the vulnerability
unaddressed.

Fhashlock.

Hashlock Pty Ltd



13

Audit Findings

[M-01] AussieDollarToken#forceTransfer - Transfer fails when trying to

forceTransfer from a blacklisted address
Description

forceTransfer(...) should successfully transfer tokens from any from address to a to
address that is a treasurer (provided that funds are sufficient), but it fails when the

from address is blacklisted.
Vulnerability Details

forceTransfer(...) calls _transfer(...) that would call
AussieDollarToken::_update(...) that reverts if the from address is blacklisted. Hence,
in the scenario where the blacklister decides to blacklist a user A that has X tokens,
then when the salvager calls forceTransfer(user A, treasurer, X), it will always revert

since user A is blacklisted.

function forceTransfer(
address from,
address to,
uint256 amount
) public onlyRole(SALVAGER_ROLE) {
require(_treasurers[to], "Recipient not a treasurer");

_transfer(from, to, amount);

/1.

1 hashlock

Hashlock Pty Ltd




function _update(
address from,
address to,
uint256 value
) internal override(ERC20Upgradeable, ERC2@PausableUpgradeable) {
require(!_blacklist[from], "Sender is blacklisted");
require(!_blacklist[to], "Recipient is blacklisted");

super._update(from, to, value);

Proof of Concept

PoC in the foundry:

/ SPDX-License-Identifier: UNLICENSED

pragma solidity %0.8.20;

import "forge-std/Test.sol";

import {AussieDollarToken} from "../src/AussieDollarToken.sol";

import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

contract AussieDollarTokenTest is Test {
AussieDollarToken internal audx;

address internal admin = address(1);

address internal pauser = address(2);

address internal minter = address(3);

address internal upgrader = address(4);

address internal blacklister = address(5);
It hashlock.

Hashlock Pty Ltd




address internal salvager = address(6);

address alice = address(7);

function setUp() public {
// Deploy implementation contract

AussieDollarToken impl = new AussieDollarToken();

// Encode call to initialize
bytes memory initData = abi.encodeWithSelector(
impl.initialize.selector,
admin,
pauser,
minter,
upgrader,
blacklister,

salvager

// Deploy proxy pointing to implementation

ERC1967Proxy proxy = new ERC1967Proxy(address(impl), initData);

// Wrap proxy with ABI

audx = AussieDollarToken(address(proxy));

function testForceTransferFailsOnBlacklisted() public {

Fhashlock.

Hashlock Pty Ltd

15




16
vm.startPrank(admin) ;
audx.addTreasurer(address(this));
vm.startPrank(minter);
audx.mint(address(this), 1000 ether);
vm.startPrank(address(this));
audx.transfer(alice, 100 ether);
vm.startPrank(blacklister);
audx.addToBlacklist(alice);
vm.expectRevert();
vm.startPrank(salvager);
audx.forceTransfer(alice, address(this), 100 ether);

vm.stopPrank();

Impact

Funds that belong to a blacklisted address cannot be sent to the treasury unless the
address is unblacklisted.

Recommendation
forceTransfer(...) should call super.update(...) instead of _transfer(...)
Status

Resolved

i hashlock

Hashlock Pty Ltd




17
Centralisation
AUDX Stablecoin project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

v

Centralised Decentralised

Fhashlock.

Hashlock Pty Ltd



18

Conclusion

After Hashlock’s analysis, the AUDX Stablecoin project seems to have a sound and
well-tested code base, now that our vulnerability findings have been resolved. Overall,
most of the code is correctly ordered and follows industry best practices. The code is
well commented on as well. To the best of our ability, Hashlock is not able to identify

any further vulnerabilities.

1t hashlock

Hashlock Pty Ltd



19

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a
collaborative effort. The objective of our security audits is to improve the quality of
systems and upcoming projects we review and to aim for sufficient remediation to help
protect users and project leaders. Below is the methodology we use in our security

audit process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code
logic, error handling, protocol and header parsing, cryptographic errors, and random
number generators. We also watch for areas where more defensive programming could
reduce the risk of future mistakes and speed up future audits. Although our primary
focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white
box penetration testing. We consider the project's website, specifications, and
whitepaper (if available) to attain a high-level understanding of what functionality the
smart contract under review contains. We then communicate with the developers and
founders to gain insight into their vision for the project. We install and deploy the
relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

1= hashlock

Hashlock Pty Ltd



20

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities
and seeing them through to successful remediation. When a potential issue is
discovered, we immediately create an issue entry for it in this document, even though
we have not yet verified the feasibility and impact of the issue. This process is vast
because we document our suspicions early even if they are later shown to not represent
exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, and then confirming the issue through code
analysis, live experimentation, or automated tests. Code analysis is the most tentative,
and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we
suggest the requirements for remediation engineering for future releases. The
mitigation and remediation recommendations should be scrutinised by the developers
and deployment engineers, and successful mitigation and remediation is an ongoing
collaborative process after we deliver our report, and before the contract details are

made public.

- hashlock

Hashlock Pty Ltd



21

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best
industry practices at the date of this report, in relation to: cybersecurity vulnerabilities
and issues in the smart contract source code, the details of which are disclosed in this
report, (Source Code); the Source Code compilation, deployment, and functionality
(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or
any other statements of the contract. While we have done our best in conducting the
analysis and producing this report, it is important to note that you should not rely on
this report only. We also suggest conducting a bug bounty program to confirm the high
level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for
the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

- hashlock

Hashlock Pty Ltd



22

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful
widespread adoption of distributed ledger technology. Our key services all have a focus
on security, as well as projects that focus on streamlined adoption in the business
sector.

Hashlock is excited to continue to grow its partnerships with developers and other
web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

i hashlock

Hashlock Pty Ltd


http://hashlock.com.au
mailto:info@hashlock.com.au

1~ hashlock

1t hashlock

HHHHHHHHHHHH

23



	Executive Summary  
	Project Context 
	Audit Scope 
	Security Rating 
	Intended Smart Contract Functions 
	Code Quality 
	Audit Resources 
	Dependencies 
	Severity Definitions 
	Status Definitions 
	Audit Findings 
	Medium 
	[M-01] AussieDollarToken#forceTransfer - Transfer fails when trying to forceTransfer from a blacklisted address 
	Description 
	Vulnerability Details 
	Proof of Concept 
	Impact 
	Status 



	Centralisation 
	Conclusion 
	Our Methodology 
	Disclaimers 
	About Hashlock 
	 

