

1

2

Table of Contents

Executive Summary​ 4

Project Context​ 4

Audit Scope​ 7

Security Rating​ 8

Intended Smart Contract Functions​ 9

Code Quality​ 10

Audit Resources​ 10

Dependencies​ 10

Severity Definitions​ 11

Status Definitions​ 12

Audit Findings​ 13

Centralisation​ 17

Conclusion​ 18

Our Methodology​ 19

Disclaimers​ 21

About Hashlock​ 22

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The BetterX team partnered with Hashlock to conduct a security audit of their smart

contracts. Hashlock manually and proactively reviewed the code in order to ensure the

project’s team and community that the deployed contracts are secure.

Project Context

AUDX Token is a stablecoin project designed to provide a transparent, secure, and fully

backed digital asset tied to the value of the Australian Dollar (AUD). Its mission is to

deliver stability and trust in the digital economy, making it easier for individuals,

businesses, and institutions to transact without exposure to the volatility commonly

associated with cryptocurrencies. By leveraging strong compliance standards and

financial oversight, AUDX aims to bridge the gap between traditional finance and

blockchain technology. The project places a strong emphasis on reliability, accessibility,

and regulatory alignment, positioning itself as a trusted solution for everyday use and

larger financial applications. ​

​

AUDX operates under TAU PTY LTD Trading as AUDX Token ABN 72 649 232 995.

Project Name: AUDX Stablecoin

Project Type: Token

Compiler Version: ^0.8.20

Website: https://www.audxtoken.com/

Logo:

Hashlock Pty Ltd

https://www.audxtoken.com/

5

Visualised Context:

Project Name Launch Date

 AUDX Stablecoin TBA

 Compiler Version Language

 v^0.8.20 SOLIDITY

 Network Token Ticker

 ETHEREUM,​ ​ ​ ​ ​ ​ ​ ​ AUDX​

 POLYGON

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit Scope

We at Hashlock audited the solidity code within the AUDX Stablecoin project, the scope

of work included a comprehensive review of the smart contracts listed below. We

tested the smart contracts to check for their security and efficiency. These tests were

undertaken primarily through manual line-by-line analysis and were supported by

software-assisted testing.

Description AUDX Stablecoin Smart Contracts

Platform Ethereum / Solidity

Audit Date July, 2025

Contract 1 ERC1967Proxy.sol

Contract 2 Ownable.sol

Contract 3 IERC1967.sol

Contract 4 BeaconProxy.sol

Contract 5 IBeacon.sol

Contract 6 UpgradeableBeacon.sol

Contract 7 ERC1967Utils.sol

Contract 8 Proxy.sol

Contract 9 ProxyAdmin.sol

Contract 10 TransparentUpgradeableProxy.sol

Contract 11 Address.sol

Contract 12 Context.sol

Contract 13 StorageSlot.sol

Audited Contract Token 0xD687759f35bb747A29246a4b9495C8f52C49E00C

Token Contract Fix Review 0x79902A09865AE680d2dB420227414Adc1298a70B

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section. The list of

audited assets is presented in the Audit Scope section and the project's contract

functionality is presented in the Intended Smart Contract Functions section.

The vulnerability initially identified has now been resolved.

Hashlock found:

1 Medium severity vulnerability

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Smart Contract Functions

Claimed Behaviour Actual Behaviour

AussieDollarToken

-​ Stablecoin is pegged to the Australian dollar, is

upgradeable, has a blacklist mechanism,

transfers can be paused, and tokens can be

rescued to the treasurers in case of emergency

Contract achieves this

functionality.

​

Hashlock Pty Ltd

10

Code Quality

This audit scope involves the smart contracts of the AUDX Stablecoin project, as

outlined in the Audit Scope section. All contracts, libraries, and interfaces mostly follow

standard best practices and to help avoid unnecessary complexity that increases the

likelihood of exploitation; however, some refactoring was required to optimize security

measures.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the AUDX Stablecoin project smart contract code in the form of GitHub

access.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in providing an understanding of the protocol's

overall architecture.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are

based on well-known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

11

Severity Definitions

The severity levels assigned to findings represent a comprehensive evaluation of both

their potential impact and the likelihood of occurrence within the system. These

categorizations are established based on Hashlock's professional standards and

expertise, incorporating both industry best practices and our discretion as security

auditors. This ensures a tailored assessment that reflects the specific context and risk

profile of each finding.

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies.

QA
Quality Assurance (QA) findings are informational and
don't impact functionality. Supports clients improve the
clarity, maintainability, or overall structure of the code.

Hashlock Pty Ltd

12

Status Definitions

Each identified security finding is assigned a status that reflects its current stage of

remediation or acknowledgment. The status provides clarity on the handling of the

issue and ensures transparency in the auditing process. The statuses are as follows:

Significance Description

Resolved

The identified vulnerability has been fully mitigated
either through the implementation of the recommended
solution proposed by Hashlock or through an alternative
client-provided solution that demonstrably addresses the
issue.

Acknowledged

The client has formally recognized the vulnerability but
has chosen not to address it due to the high cost or
complexity of remediation. This status is acceptable for
medium and low-severity findings after internal review
and agreement. However, all high-severity findings must
be resolved without exception.

Unresolved
The finding remains neither remediated nor formally
acknowledged by the client, leaving the vulnerability
unaddressed.

Hashlock Pty Ltd

13

Audit Findings

Medium

[M-01] AussieDollarToken#forceTransfer - Transfer fails when trying to

forceTransfer from a blacklisted address

Description

forceTransfer(...) should successfully transfer tokens from any from address to a to

address that is a treasurer (provided that funds are sufficient), but it fails when the

from address is blacklisted.

Vulnerability Details

forceTransfer(...) calls _transfer(...) that would call

AussieDollarToken::_update(...) that reverts if the from address is blacklisted. Hence,

in the scenario where the blacklister decides to blacklist a user A that has X tokens,

then when the salvager calls forceTransfer(user A, treasurer, X), it will always revert

since user A is blacklisted.

function forceTransfer(

 address from,

 address to,

 uint256 amount

) public onlyRole(SALVAGER_ROLE) {

 require(_treasurers[to], "Recipient not a treasurer");

 _transfer(from, to, amount);

 }

 // ...

Hashlock Pty Ltd

14

function _update(

 address from,

 address to,

 uint256 value

) internal override(ERC20Upgradeable, ERC20PausableUpgradeable) {

 require(!_blacklist[from], "Sender is blacklisted");

 require(!_blacklist[to], "Recipient is blacklisted");

 super._update(from, to, value);

 }

Proof of Concept

PoC in the foundry:

/ SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.20;

import "forge-std/Test.sol";

import {AussieDollarToken} from "../src/AussieDollarToken.sol";

import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

contract AussieDollarTokenTest is Test {

 AussieDollarToken internal audx;

 address internal admin = address(1);

 address internal pauser = address(2);

 address internal minter = address(3);

 address internal upgrader = address(4);

 address internal blacklister = address(5);

Hashlock Pty Ltd

15

 address internal salvager = address(6);

 address alice = address(7);

 function setUp() public {

 // Deploy implementation contract

 AussieDollarToken impl = new AussieDollarToken();

 // Encode call to initialize

 bytes memory initData = abi.encodeWithSelector(

 impl.initialize.selector,

 admin,

 pauser,

 minter,

 upgrader,

 blacklister,

 salvager

);

 // Deploy proxy pointing to implementation

 ERC1967Proxy proxy = new ERC1967Proxy(address(impl), initData);

 // Wrap proxy with ABI

 audx = AussieDollarToken(address(proxy));

 }

 function testForceTransferFailsOnBlacklisted() public {

Hashlock Pty Ltd

16

 vm.startPrank(admin);

 audx.addTreasurer(address(this));

 vm.startPrank(minter);

 audx.mint(address(this), 1000 ether);

 vm.startPrank(address(this));

 audx.transfer(alice, 100 ether);

 vm.startPrank(blacklister);

 audx.addToBlacklist(alice);

 vm.expectRevert();

 vm.startPrank(salvager);

 audx.forceTransfer(alice, address(this), 100 ether);

 vm.stopPrank();

 }

Impact

Funds that belong to a blacklisted address cannot be sent to the treasury unless the

address is unblacklisted.​

Recommendation

forceTransfer(...) should call super.update(...) instead of _transfer(...)

Status

Resolved

Hashlock Pty Ltd

17

Centralisation

AUDX Stablecoin project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

18

Conclusion

After Hashlock’s analysis, the AUDX Stablecoin project seems to have a sound and

well-tested code base, now that our vulnerability findings have been resolved. Overall,

most of the code is correctly ordered and follows industry best practices. The code is

well commented on as well. To the best of our ability, Hashlock is not able to identify

any further vulnerabilities.

Hashlock Pty Ltd

19

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security

audit process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

20

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

21

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

22

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

23

Hashlock Pty Ltd

	Executive Summary
	Project Context
	Audit Scope
	Security Rating
	Intended Smart Contract Functions
	Code Quality
	Audit Resources
	Dependencies
	Severity Definitions
	Status Definitions
	Audit Findings
	Medium
	[M-01] AussieDollarToken#forceTransfer - Transfer fails when trying to forceTransfer from a blacklisted address
	Description
	Vulnerability Details
	Proof of Concept
	Impact
	Status

	Centralisation
	Conclusion
	Our Methodology
	Disclaimers
	About Hashlock
	

